

Genomic phylostratigraphy reveals a wealth of *Hermetia illucens* species-specific genes of unknown function

Momir Futo

Shoool of Medicine Catholic University of Croatia

Genomic phylostratigraphy

- genetic bio-statistical method
- dating the origin of specific genes by looking at their homologs across species
- system links genes to their founder gene, allowing us to then determine their age
- better understand many evolutionary processes such as
 - patterns of gene birth throughout evolution
 - the relationship between the age of a transcriptome throughout embryonic development

Founder genes

- diversity of the genome is not caused only by gene duplications but also by continuous, frequent de novo gene births
- "founder genes" form from non-genic DNA sequences, as well as from changes in reading frame, other ways of arising from existing genes
- the founder genes can then be sorted into a specific phylostratum - the clade that includes all the genes that derive from the same founder gene
- we can signify that this gene was formed in the common ancestor of a certain clade
- (e.g. Arthropoda, Mammalia, Metazoa, etc.)

Evolutionary age and function

- Positioning the founder genes and their descendants on different phylostrata allows us to age them
- This can then be used to analyze the origin of certain functions of proteins and developmental processes on a macroevolutionary scale

A phylogenetically based transcriptome age index mirrors ontogenetic divergence patterns

Nature 468, 815–818 (2010) Cite this article

> Trends Genet. 2007 Nov;23(11):533-9. doi: 10.1016/j.tig.2007.08.014.

A phylostratigraphy approach to uncover the genomic history of major adaptations in metazoan lineages

Tomislav Domazet-Loso ¹, Josip Brajković, Diethard Tautz

Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis

Nature Communications 2, Article number: 248 (2011) Cite this article

A transcriptomic hourglass in plant embryogenesis

Marcel Quint [™], Hajk-Georg Drost, Alexander Gabel, Kristian Karsten Ullrich, Markus Bönn & Ivo Grosse

Nature 490, 98–101 (2012) Cite this article

Embryo-Like Features in Developing Bacillus subtilis Biofilms

```
Momir Futo <sup>1</sup>, Luka Opašić <sup>1</sup> <sup>2</sup>, Sara Koska <sup>1</sup>, Nina Čorak <sup>1</sup>, Tin Široki <sup>3</sup>, Vaishnavi Ravikumar <sup>4</sup>, Annika Thorsell <sup>5</sup>, Maša Lenuzzi <sup>1</sup> <sup>6</sup>, Domagoj Kifer <sup>7</sup>, Mirjana Domazet-Lošo <sup>3</sup>, Kristian Vlahoviček <sup>8</sup> <sup>9</sup>, Ivan Mijakovic <sup>4</sup> <sup>10</sup>, Tomislav Domazet-Lošo <sup>1</sup> <sup>11</sup>
```

> Mol Biol Evol. 2020 Jun 1;37(6):1667-1678. doi: 10.1093/molbev/msaa035.

Evolutionary Analysis of the Bacillus subtilis Genome Reveals New Genes Involved in Sporulation

```
Lei Shi <sup>1</sup>, Abderahmane Derouiche <sup>1</sup>, Santosh Pandit <sup>1</sup>, Shadi Rahimi <sup>1</sup>, Aida Kalantari <sup>1</sup>, Momir Futo <sup>2</sup>, Vaishnavi Ravikumar <sup>3</sup>, Carsten Jers <sup>3</sup>, Venkata R S S Mokkapati <sup>1</sup>, Kristian Vlahoviček <sup>4</sup> <sup>5</sup>, Ivan Mijakovic <sup>1</sup> <sup>3</sup>
```

Article

Pleomorphic Variants of *Borreliella* (syn. *Borrelia*) burgdorferi Express Evolutionary Distinct Transcriptomes

Nina Čorak ¹, Sirli Anniko ^{2,3}, Christina Daschkin-Steinborn ², Viktoria Krey ^{2,4}, Sara Koska ¹, Momir Futo ^{1,5,6}, Tin Široki ⁵, Innokenty Woichansky ², Luka Opašić ¹, Domagoj Kifer ⁷, Anja Tušar ¹, Horst-Günter Maxeiner ^{2,8}, Mirjana Domazet-Lošo ⁵, Carsten Nicolaus ² and Tomislav Domazet-Lošo ^{1,6,*}

Phylostratigraphic map

Predictive power

Insecta – 35 species

Insecta – 35 species

Our phylostratigraphic map

Phylostratum	PS_No.	No. o	of proteins
Cellular_organisms		1	4839
DPANN/Euryarchaeota/TACK/Asgard_archaea/Eukaryota		2	123
Euryarchaeota/TACK/Asgard_archaea/Eukaryota		3	50
TACK/Asgard_archaea/Eukaryota		4	57
Asgard_archaea/Eukaryota		5	69
Eukaryota		6	3901
Amorpheae		7	96
Obazoa		8	30
Opisthokonta		9	282
Holozoa		10	151
Filozoa		11	61
Choanoflagellida/Metazoa		12	267
Metazoa		13	295
Myriazoa		14	202
Parahoxozoa		15	357
Bilateria		16	441
Protostomia		17	126
Ecdysozoa		18	11
Arthropoda		19	183
Mandibulata		20	115
Pancrustacea		21	153
Insecta		22	438
Eumetabola		23	117
Holometabola/Psocodea		24	36
Holometabola		25	92
Aparaglossata		26	160
Mecopterida		27	44
Diptera		28	295
Bibionomorpha		29	42
Brachycera		30	213
Hermetia_illucens		31	835

H. illucens proteome:14,081 protein entries

31 phylostrata in total

PS No. 31 – proteins specific to *H. illucens*

835

Functional analasys

- 835 genes analyzed
- EggNOG database 0 annotations
- INterPro databases only a few anotations
 - Gene3D
 - PANTHER
 - PRINTS
 - Pfam
 - ProSitePatterns
 - ProSiteProfiles
 - SMART
 - SUPERFAMILY

Outlook

Plenty of genes of unknown function to work with

 To build a robust and resolved phylogeny enriched with insect clades

H. illucens developmental transcriptomics

HRVATSKO KATOLIČKO SVEUČILIŠTE Z A G R E B UNIVERSITAS STUDIORUM CATHOLICA C R O A T I C A Z A G R A B I A

Thanks!

Niko Kasalo

Tomislav Domazet-Lošo, PhD