

Research Institute of Organic Agriculture FiBL info.suisse@fibl.org, www.fibl.org

Pervasive plasticity: G × E interactions for larval performance & body composition traits in the black soldier fly (BSF)

Christoph Sandrock
Athens, Greece
January 29, 2025

What factors influence BSF larval performance & body composition?

Fully crossed factorial design to assess effects of: feed substrate (3 diets), BSF genetics (4 strains) & their interaction (6 replicates/combination)

Design: Genetically distinct experimental strains

Microsatellite genotyping of 50 individuals per population (15 loci)

www.fibl.org

All populations maintained equally for ≥2 entire generations prior to experiment

Strain	Pa	irwise	F _{ST}	F _{IS}	H _{obs}	H _{exp}	\mathbf{A}_{R}	N _e
	S1	S2	S3					
S1				0.13	0.50	0.56	4.0	110
S2	0.33			0.14	0.43	0.49	3.9	193
S3	0.31	0.11		0.02	0.55	0.56	4.5	267
S4	0.13	0.35	0.36	-0.01	0.52	0.52	3.7	147

Arti

Genotype-by-Diet Interactions for Larval Performance and Body Composition Traits in the Black Soldier Fly, Hermetia illucens

Insects 2022, 13, 424. https://doi.org/10.3390/insects13050424

3

Design: Nutritionally different experimental diets

FiBL

Poultry manure (PM)

- Adjusted dietary dry matter (DM)
- Ventilated vessels (rotated)
- 1100 neonates/box (5 days old; ~2mg)
- Climate cabinet: 28°C, 50% rel. humidity
- equal daily feeding rates (~23mg DM per larva) provided every other day
- Daily inspections; harvest: one day after observing first prepupae were

(g/kg DM)	PF	FW	PM
Protein	196	140	94
Fat	50	52	23
Ash	132	35	258
Fibre	299	317	399

- **Growth-tracking**
- Survival rate
- Composition of diets, larval biomass & frass
- Relevant (conversion) parameters
- Larval amino acid profiling

Results: Larval growth dynamics over time

FiBL

Results: larval live weight, mortality rate and total biomass (DM)

	Strain	Diet	S × D
Mortality (%)	***	***	***
Larval live weight (mg)	***	***	***
Larval biomass (g DM)	***	***	***

Results: crude protein, lipid and ash

	Strain	Diet	S×D
Protein (% of DM)	***	***	***
Lipids (% of DM)	***	***	***
CP/EE ratio	***	***	***
Ash (% of DM)	***	***	***

www.fibl.org

7

Results: conversion efficiency, waste reduction and emissions

	Strain	Diet	S×D
Nitrogen and overall bioconversion efficiency (g/kg DM)	***	***	***
DM reduction (%)	***	***	***
Emissions of DM (g/kg)	***	***	***

Results: dietary fiber reduction

	Strain	Feed	S×D
Hemicellulose reduction (g/kg diet)	***	***	***
Acid detergent fiber reduction (g/kg diet)	***	***	

Results: Larval amino acid profiles (g/100g Protein)

	Strain	Diet	S × D
Ala	***	***	***
Arg	***	***	***
Asx	***		***
Cys		***	***
Glx	***	***	***
Gly	***	***	***
His	***	***	***
Ile			
Leu	***	*	*
Lys	***	***	***
Met	*	***	***
Phe	***	***	***
Pro	***	***	***
Ser		***	
Thr	***	***	***
Tyr	***	***	***
Val	***	***	***

Essential
Non-essential

Conclusions & implications

Overarching diet effects expected – prevalent & significant BSF genotype effects were new

Omnipresent genotype-by-diet interactions across virtually all target traits

Dietary specialists > moderate generalists within certain dietary ranges > general superiority

Comparative geno-/phenotyping highlights variation for (heritable) traits & breeding potentials

Screening diverse wild populations to discover novel phenotypes

More complex of interactions – e.g. including microbiota - requires further research

Funding: Swiss Federal Office for Agriculture (FOAG)

Project partners:

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich AgroVet Strickhof

0

Technische Universität München

Thanks to:

Simon Leupi,
Jens Wohlfahrt,
Cengiz Kaya,
Carmen Kunz,
Willi Windisch,
Michael Kreuzer,
Florian Leiber

Contact

Christoph Sandrock

Research Institute of Organic Agriculture, FiBL

5070 Frick, Switzerland

Phone +41 62 865 04 19

christoph.sandrock@fibl.org

BSF strain sources:

- 1) FiBL house strain;
- 2) Emilie Devic / Entofood, Malaysia;
- 3) Claire Leach / Hatch Biosystems, Australia;
- 4) Heather Fallquist & Mohammed Gastli / nextProtein, Tunisia