

Lysiphlebus fabarum

Cosmopolitan distribution

Sexual and asexual populations

Asexuality is inherited as a single locus recessive trait

7 x asexual lines

Does mating = sex?

Proportion used sperm

Does mating = sex?

X 7 asexual lines x 1 outbred sexual

Gen 0

0 hours

72 hours

0 hours 72 hours 14 days (20°C)

Asexual females produce more daughters regardless of mated status

Predictions

Daughters of mated asexual females have higher fitness

Genetic benefits

Gen 1

Gen 2

Asexual females rarely produce males regardless of whether or not they mated

Gen 1

Gen 2

Asexual females rarely produce males regardless of whether or not they mated

But this doesn't translate to more daughters

Gen 1

Gen 2

Asexual females rarely produce males regardless of whether or not they mated

But this doesn't translate to more daughters

G1 Daughters of mated (G0) asexual females have high rates of reproductive failure

Gen 1

Gen 2

Fitness outcome

Estimated granddaughter production *lowest* under facultative sex (mated asexual G0)

Obligately sexual and asexual G0 females statistically equivalent

$$X^2 = 6.63$$
, df = 2, 90, p = 0.04

Gen 1

Short-term facultative sex is costly

 Long-term genetic benefits depend on offspring fertility – need more generations

 Facultative/cryptic sex as a tool for 'genetic rescue' of parthenogenetic commercially reared insects? Arianna Chiti
Pauline Blaikie
Clare Bird
Taliesin Valencia
Laura Corral

Thank you!

Bart Pannebakker Kelley Leung

Christoph Vorburger

Allele from asexual mother

Allele from sexual population

63 females from 14 broods, 4 lines of unmated asexual mothers

10 alleles of potential sexual origin in 8 individuals2 potential triploids

107 females from 32 broods,4 lines of mated asexual mothers121 alleles of potential sexual origin across 33 individuals

29 possible triploids, only 3 with no potential sexual alleles (only triploid at one locus)

45-48% of pest species sampled were parthenogenetic

10-16% of non-pest species

Hoffman et al. 2008

High frequency of parthenogenesis in invertebrates

Variable across taxa, high in haplodiploids

van der Kooi et al. 2017

After 4 generations
 of rearing as
 facultatively sexual
 still high rate of
 reproductive failure
 under facultative sex

$$X^2 = 8.5484$$
, df = 1, p-value = 0.003

Triploidy is probably important, but it doesn't explain all the variation in reproductive failure

Genetic slippage - sets of genes work well together get reshuffled

Facultative sex increases reproductive failure

Triploidy is probably important, but it doesn't explain all the variation in reproductive failure

Genetic slippage - sets of genes work well together get reshuffled

Cyclical parthenogenesis

Popn's w/ more frequent sex = reduced reproductive failure

Results X 7 asexual lines Gen 1 Gen 0 Multilocus genotypes of broods from asexual mated females, virginasexuals and sexual females

Gen 0 Gen 1

Gen 2

Only when females that failed to produce any mummies excluded, otherwise...

Sexual females more likely to fail to parasitise than asexuals regardless of their mated status

Costs of sex in Lysiphlebus

- Females produced sexually are more likely to fail
- This is the most extreme for sexually produced daughters of asexual females
- Why?
 - Genetic slippage sets of genes work well together get reshuffled
- When sexual females do parasitise successfully they produce more offspring which gets rid of the cost of males
 - Sex purges deleterious recessives/fixes beneficial mutations
 - Not in the case of facultative sex?

- Sexual females more likely to fail to parasitise
 - A cost of sex, not a cost of mating
 - Just as bad for virgin sexual females
- When they do successfully parasitise, sexual females
 - Produce more mummies
 - Which more wasps emerge from
- This increased offspring production makes up for the 2-fold cost of males
 - Sexual females produce as many daughters as asexuals

Gen 2

- Asexual females can still reproduce sexually
- Asexual females whose mothers mated much more likely to fail to parasitise than if their mothers remained virgin
 - Again, a cost of sex, not a cost of mating because it only showed up in the second generation
 - Cost more severe than in sexuals points to genetic slippage/unmasking of deleterious recessives as the cause of the cost

Gen 1

Gen 2

Probably because...

Higher % emergence success from sexual mummies

Wasp is the point of sex?

- If it happens often enough in the field it maintains genetic variation and heterozgosity
- Costs of genetic slippage may not be a problem in the field if asexual females mate with (rare) closely related asexual males.
- Sex could be a bet-hedging strategy persists at a low level despite the costs because it reduces variation in fitness over many generations

Sexual reproduction as bet-hedging

- Geometric mean fitness vs arithmetic mean fitness
- Geometric is measured as between generation fitness
- Across environments (and generations) bet-hedgers have higher fitness
- Bet-hedging (sex) favored in more variable environments

Wasp is the point of sex?

- If it happens often enough in the field it maintains genetic variation and heterozgosity
- Costs of genetic slippage may not be a problem in the field if asexual females mate with (rare) closely related asexual males.
- Sex could be a bet-hedging strategy persists at a low level despite the costs because it reduces variation in fitness over many generations
- In L. fabarum if sex results in more diverse offspring some of which do better in different environments, sex could be maintained by bet-hedging

Sexual reproduction as bet-hedging

- In Lysiphlebus if sex is a bethedging strategy could explain why sexuals are still around AND why asexuals haven't lost the ability to reproduce sexually
- Do asexual parasitoid wasps tend to inhabit more stable environments?
- Change in sexual vs asexual allele frequencies over the season?

Next steps

- Why are sexually produced females more likely to fail to parasitise?
 - Do they still sting hosts?
 - Do they still lay eggs?
 - · When does failure occur and are they producing diapause eggs?
- Does the proportion of females that fail change if the environment changes?
 - Different host species/host adaptations?
 - Hamiltonella?
 - Host plant or temperature

Mia Graham
Rose McKeon
Arianna Chiti
Pauline Blaikie
Luc Bussiere
Matt Tinsley
Clare Bird

Bart Pannebakker

Christoph Vorburger

Thank you!

Central fusion automixis

Mostly maintains heterozygosity

Recombination can lead to reduced heterozygosity at the tips

No sons but same number daughters

Sexual females more fecund so they produce same number daughters

Mating increases reproductive failure

Genetic costs

Why have sex if you don't need to?

Asexual female

Lysiphlebus accept
matings from males
produced by sexual
females

Benefits only accrue when environment changes

Insufficient costs/time to erode sexual traits

Gen 1

Gen 2

Gen 2 - Mated - Virgin 1.00 0.75 0.50 0.25 p = 0.330.00 20 40 60

Gen 1

Gen 2

Line	Remained virgin	Attempted matings	Successful matings	proportion attempts successful
348	10	14	8	0.57
402	10	20	10	0.50
554	5	5	5	1.00
64	11	25	10	0.40
658	3	5	5	1.00
66	5	5	5	1.00
84	4	6	5	0.83
Sexual	18	23	22	0.96

Mating rates

N = 128

Parasitoid wasps

Diverse reproductive modes and mating systems

Gen 1

Gen 2

Sexual females more likely to fail to parasitise than asexuals

	X ²	р
Reproductive mode	4.02	0.045
Mated status	1.35	0.245
Interaction	0.3	0.586

Gen 1

Gen 2

	X ²	р
Reproductive mode	5.29	0.021
Mated status	0.33	0.564
Interaction	0.24	0.627

Of the females that were successful (N = 102), sexuals produced more mummies

Gen 1

Gen 2

Results

Higher proportions of adult wasps emerged from mummies produced by sexual females and by virgin females (sexual and asexual)

Failed Succeeded

Results

Daughters of mated asexual females more likely to fail

Virgin

Mated

For females that did successfully parasitise (N = 54) there was no effect of mothers mated status on mummy production or the proportion of mummies that successfully emerged

		X ²	p
Mummy production	Mothers mated status	2.41	0.12
Proportion emerged	Mothers mateu status	0.20	0.64