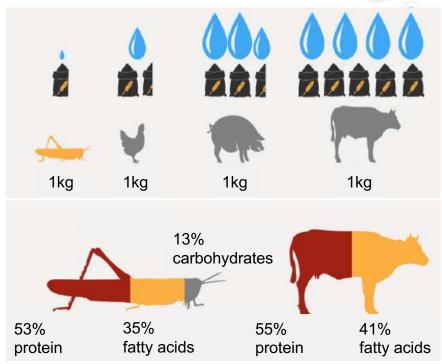
POPULATION AND FUNCTIONAL GENOMICS OF

BLACK SOLDIER FLY MASS REARING

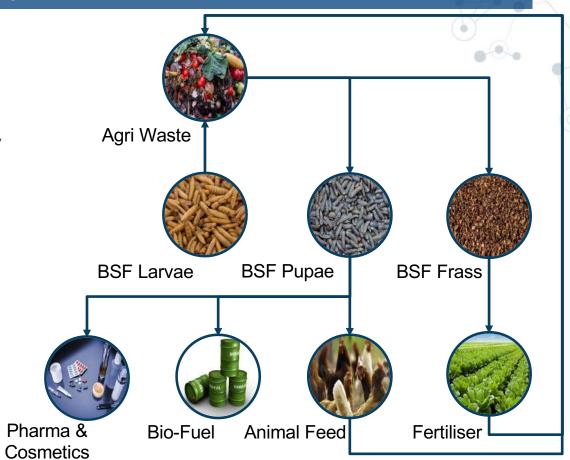
Clint Rhode Ph.D. Pr.Sci.Nat.

Department of Genetics, Stellenbosch University, South Africa *clintr@sun.ac.za



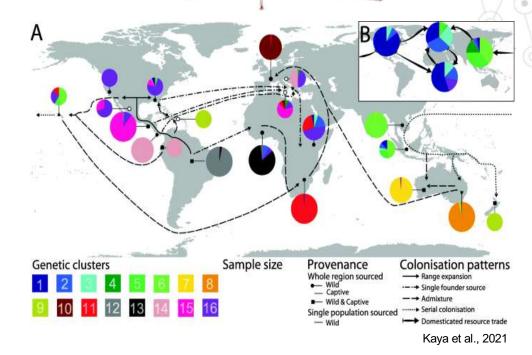
The Promise of Insect Farming...

...Reduce, Resilience, Reliable...


- Growing human population
- Diminishing natural recourses
- Threat of global climate change
- Food and nutritional insecurity

The Black Soldier Fly (BSF)...

...An emerging hero for insect farming?


- Advantages of insect farming
- Added bioremediation capacity
- Circular Agricultural Economy
- Sustainability

"What" is the Black Soldier Fly (BSF)?

... Is it a bird? Is it a wasp? No, it's SuperFly!

- Cosmopolitan species of the Stratiomyidae family
- South American origin
- Human mediated global distribution
- Benign 'invader'
- Commercial production globally
- Genetic and phenotypic variation

Black Soldier Fly (BSF) Diversity

A rich germplasm resource for genetic improvement

Advantages

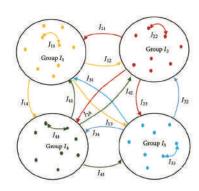
High genetic diversity – high evolutionary potential

Scope for artificial selection

Opportunities for cross breeding strategies – hybrid vigour

Caution

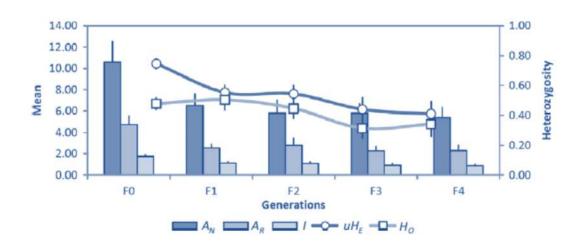
GxE might alter phenotypic performance


Outbreeding depression

Black Soldier Fly (BSF) Diversity

Factors that impact the genetic diversity of populations

- Insect populations are demographically dynamic
 Frequent extinction and recolonisation events, metapopulations
- Insects have r-selected life history characteristics
 Short life cycle
 High fecundity
 - Skewed reproductive success
- A variety of mating systems
 Positive assortative mating and genetic polyandry in BSF
- Selection pressures with functional intersections
 Phenotypic plasticity?


Audio

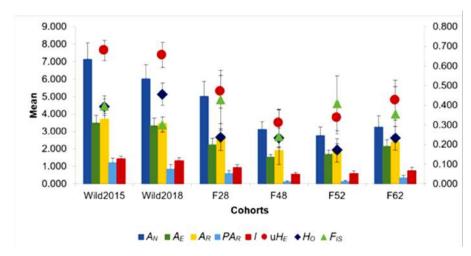
Patterns of Genetic Diversity and Mating Systems in a Mass-Reared Black Soldier Fly Colony

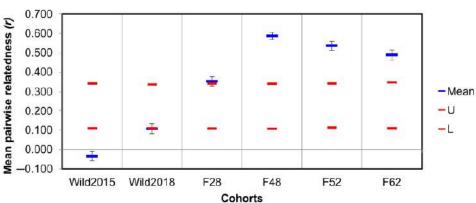
Lelanie Hoffmann ¹, Kelvin L. Hull ¹, Anandi Bierman ², Rozane Badenhorst ², Aletta E. Bester-van der Merwe and Clint Rhode ^{1,8}

Black Soldier Fly Populations

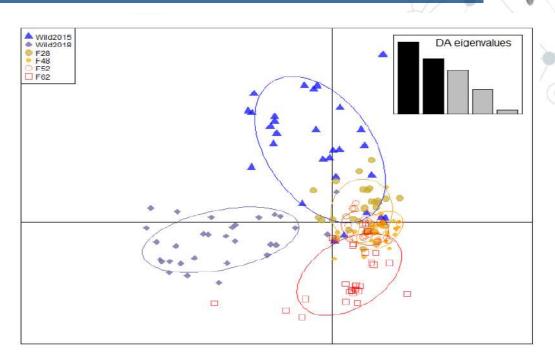
...What happens during a colonisation event?

ANIMAL GENETICS Immunogenetics, Molecular Genetics and Functional Genomics


Genetic and phenotypic consequences of early domestication in black soldier flies (Hermetia illucens)


C. Rhode* [0], R. Badenhorst*-†, K. L. Hull*, M. P. Greenwood*, A. E. Bester-van der Merwe*, A. A. Andere†, C. J. Picard‡ and C. Richards†

*Department of Cenebia, Stallenbasch University, Private Bag X1, Matieland 7602, South Africa. †AgriPetein Holdings Ltd, 1 Farnham Road, Guildford, SurreyGU2 4RC, UK, Department of Biology, Purblue School of Science, Indiana University – University of Purdue Indianapole, S. 306, 723 W Michigan Street, Indianapole, in 4602, USA.

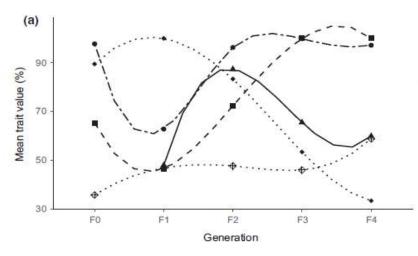

Black Soldier Fly Populations

...What happens during a colonisation event?

1 0

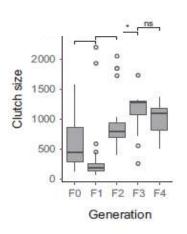
insects

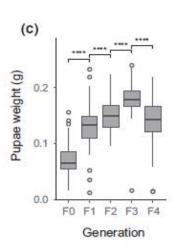
MDPI

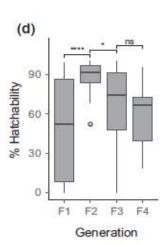

Article

Patterns of Genetic Diversity and Mating Systems in a Mass-Reared Black Soldier Fly Colony

Lelanie Hoffmann ¹, Kelvin L. Hull ¹, Anandi Bierman ², Rozane Badenhorst ², Aletta E. Bester-van der Merwe ² and Clint Rhode ^{1,6}


Black Soldier Fly Populations


...What happens during a colonisation event?



Trait

- % Edosion
- ♦ % Female
- % Hatchability
- % Oviposition
- % Pupation

Genetic and phenotypic consequences of early domestication in black soldier flies (Hermetia illucens)

C. Rhode* (10), R. Badenhorst**†, K. L. Hull*, M. P. Greenwood*, A. E. Bester-van der Merwe*, A. A. Andere*, C. J. Picard* and C. Richards*

*Department of Cenetics, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa. *AgriProtein Hoblings Ltd. 1 Famham Road, Guidford, SureyGUZ 4RC, UK. *Department of Biology, Purdue School of Scence, Indiana University – University of Purdue Indianapolis, S. 2306, 723 W McChiging Street, Indianapolis, N 4602, USA.

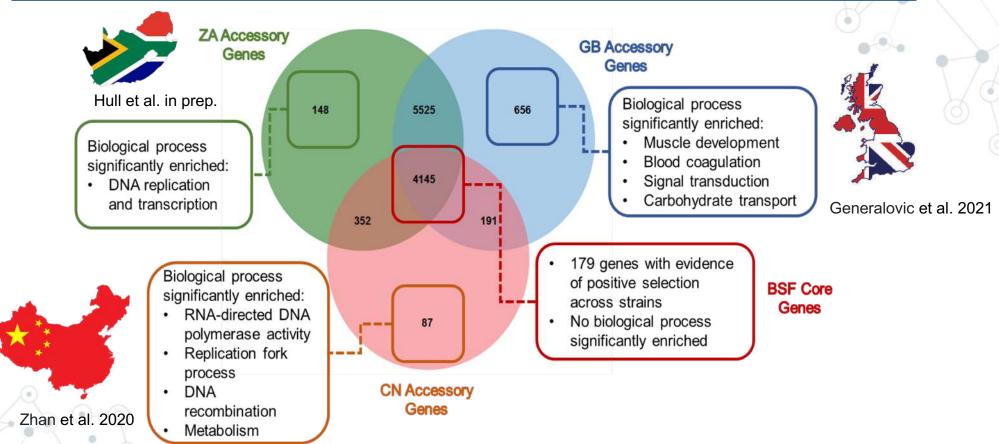
Research Question & Objectives

What are the evolutionary drivers of genetic and phenotypic variation in BSF?

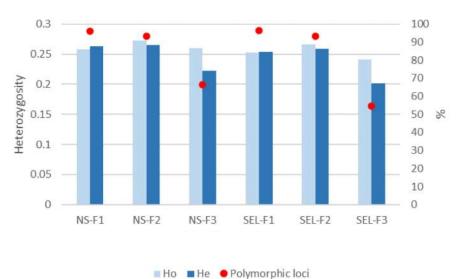
Objective 1: Comparative genomic assessment of BSF strains

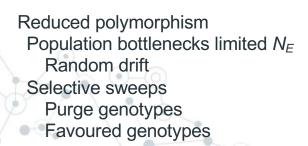
Objective 2: Population genomics of a colonisation event

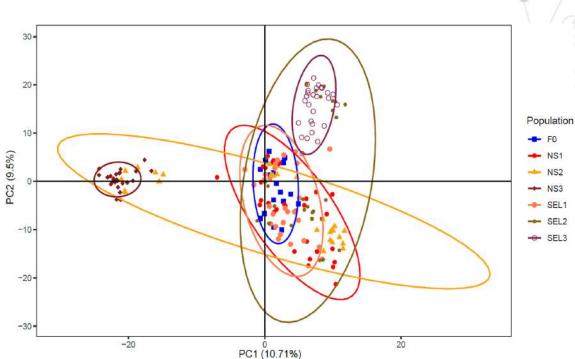
Objective 3: Transcriptomic analysis of differential gene expression



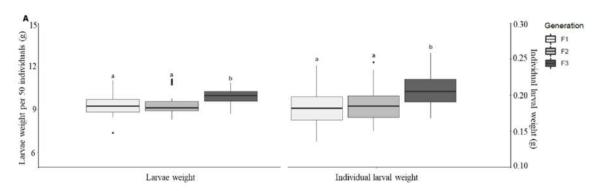
Objective 4: Microbiome of BSF strains on different feeds

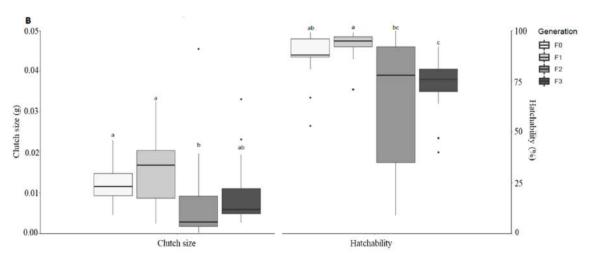

Comparative genomics of BSF strains



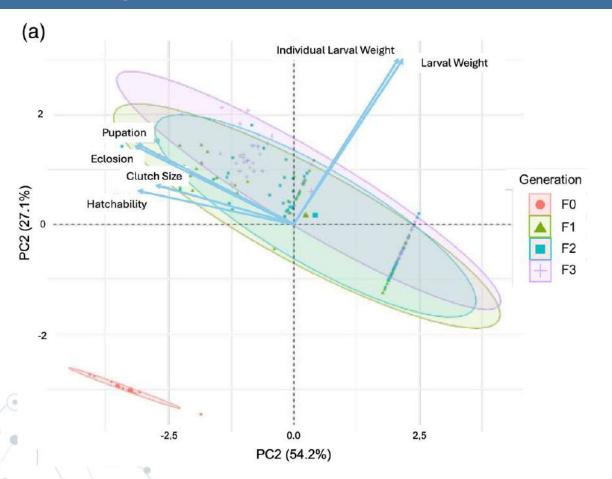


Population genomics of BSF colonisation event





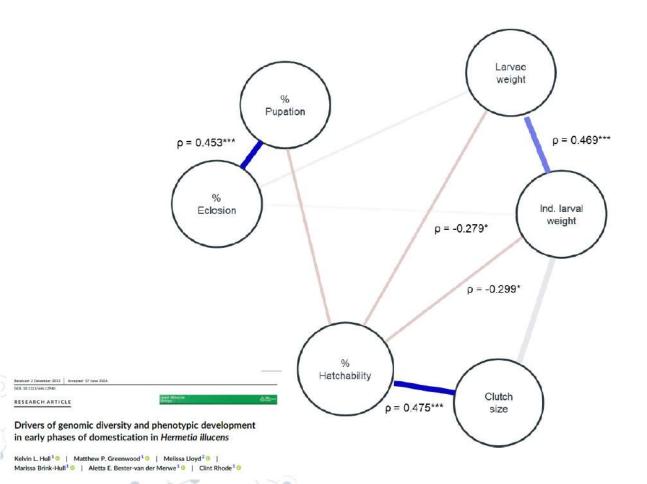
Population genomics of BSF colonisation event


10

Drivers of genomic diversity and phenotypic development in early phases of domestication in *Hermetia illucens*

Kelvin L. Hull ¹ | Matthew P. Greenwood ¹ | Melissa Lloyd ² | Marissa Brink-Hull ¹ | Aletta E. Bester-van der Merwe ¹ | Clint Rhode ¹ |

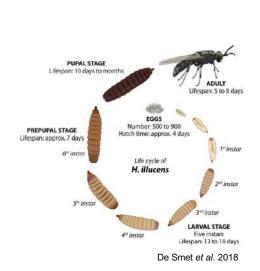
Population genomics of BSF colonisation event

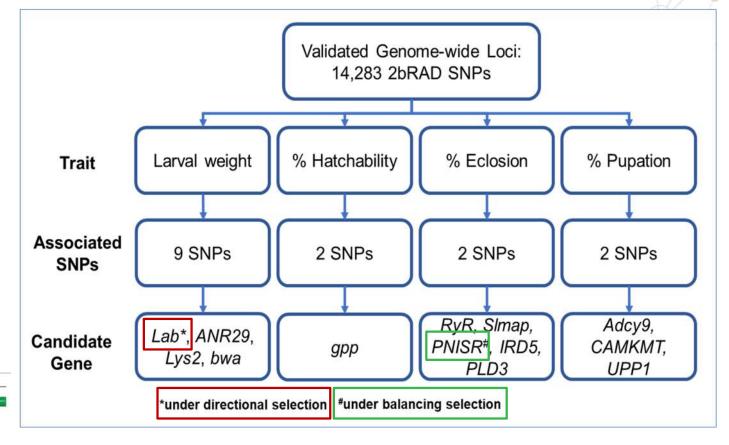

Review 2 December 2023 | Accepte 17 June 2004 |
005 10.1113/1960.1740 |
RESEARCH ARTICLE |
Text Manager 10 June 2004 |
Text Manager 10 June 20

Drivers of genomic diversity and phenotypic development in early phases of domestication in *Hermetia illucens*

```
Kelvin L. Hull <sup>1</sup> | Matthew P. Greenwood <sup>1</sup> | Melissa Lloyd <sup>2</sup> | Marissa Brink-Hull <sup>1</sup> | Aletta E. Bester-van der Merwe <sup>1</sup> | Clint Rhode <sup>1</sup>
```

Population genomics of BSF colonisation event

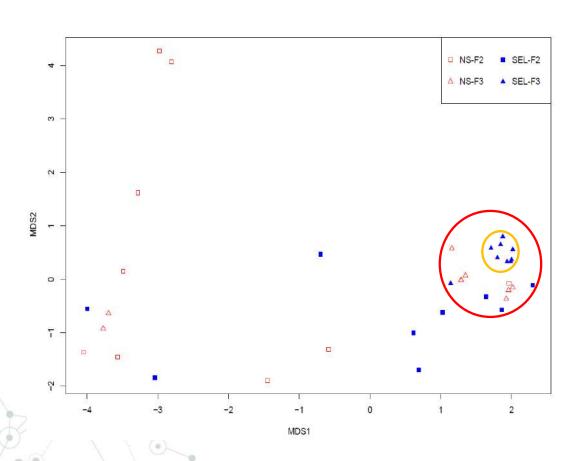


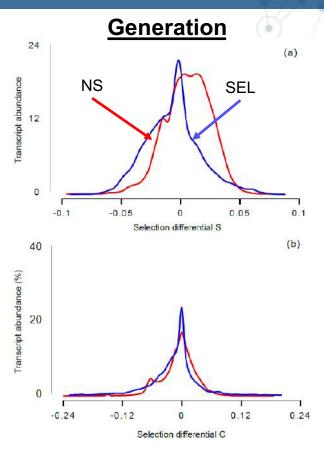


Trait	h ² _{SNP}
Larval Mass	~0.18
% Eclosion	n.s.
% Pupation	n.s.
% Hatchability	~0.16
Clutch Size	~0.06

Population genomics of BSF colonisation event

Drivers of genomic diversity and phenotypic development in early phases of domestication in *Hermetia illucens*


RESEARCH ARTICLE


Kelvin L. Hull ¹ Matthew P. Greenwood ¹ Melissa Lloyd ² Marissa Brink-Hull ¹ Aletta E. Bester-van der Merwe ¹ Clint Rhode ¹

10

Population Transcriptomics of BSF colonisation event

Experimental grouping Differentially Expressed Genes

Generational cohorts: F2 vs F3

GO Enrichment

898 Genes

- Immune Response
- Metabolism
- Catalytic Activity
- Developmental processes

Negative correlation with larval weight

Selection Regime cohorts:

Non-selected *vs*Selected for growth

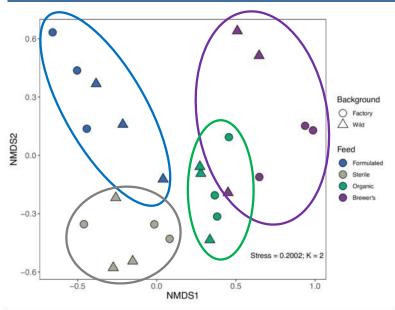
231 Genes

GO Enrichment

- Metabolism
- Catalytic Activity

Insect Molecular Biology

Original Article @ Open Access @ ①


Gene expression differentials driven by mass rearing and artificial selection in black soldier fly colonies

Kelvin L., Hull, Matthew P. Greenwood, Melissa Lloyd, Aletta E. Bester-van der Merwe, Clint Rhode

First published: 02 November 2022 | https://doi.org/10.1111/imb.12816

Microbiome of BSF strains on different feeds

Df	SS	\mathbb{R}^2	Pseudo-F	p
1	0.357	0.078	3.053	0.009
3	1.714	0.374	4.885	< 0.001
3	0.637	0.139	1.815	0.031
16	1.872	0.409		
23	4.580	1.000		
	1 3 3 16	1 0.357 3 1.714 3 0.637 16 1.872	1 0.357 0.078 3 1.714 0.374 3 0.637 0.139 16 1.872 0.409	1 0.357 0.078 3.053 3 1.714 0.374 4.885 3 0.637 0.139 1.815 16 1.872 0.409

Factory Wild Genus Actinobacteria; Actinomyces Bacteroidetes; Chryseobacterium Bacteroidetes; Sphingobacterium Firmicutes: [Ruminococcus] Relative Genus Abundance Firmicutes; Clostridium Firmicutes; Enterococcus Firmicutes; Lactobacillus Firmicutes; Veillonella Proteobacteria; Acinetobacter Proteobacteria; Alcaligenes Proteobacteria; Citrobacter Proteobacteria; Frischella Proteobacteria; Ignatzschineria Proteobacteria: Klebsiella Proteobacteria; Morganella Proteobacteria; Proteus Proteobacteria; Providencia Proteobacteria; Pseudomonas Formulated Sterile Organic Brewer's Formulated Sterile Organic Brewer's Diet

Association with Protein: Fat ratios of larvae

Feed and Host Genetics Drive Microbiome Diversity with Resultant Consequences for Production Traits in Mass-Reared Black Soldier Fly (*Hermetia illucens*) Larvae

EAAP | Insect Genetics IMP 2025 | Athens | Greece

Conclusions

- Unique accessory genes amongst global BFS strains
- Random genetic drift was the major evolutionary driver of genomic diversity (Driftbarrier hypothesis)
- Functional trade-offs between growth metabolism and immune function;
 Production traits and Fitness traits
- Microbiomes act as classical quantitative genetic trait with correlations with other traits

Acknowledgements

THANK YOU!

Clint Rhode, Ph.D., Pr.Sci.Nat.

Department of Genetics, Stellenbosch University clintr@sun.ac.za

Kelvin Hull, Ph.D.

Rozane Badenhorst, M.Sc.

Matthew Greenwood, M.Sc.

Lelanie Hoffmann, M.Sc.

