

Relevance of studying fecundity

How to get individual egg clutches

Breeding cycle

High temperature 30-32°C

Egg clutch weight

Maternal body weight is positively corelated with egg yield

r=Spearman's correlation rho, (*P<0.05; **P<0.01; ***P<0.001)

Acetone, an effective way to count eggs

Maternal body weight is positively corelated with fecundity

r=Spearman's correlation rho, (*P<0.05; **P<0.01; ***P<0.001)

Tradeoff on offspring fitness?

Few bigger eggs

Differ with genetic strains

Differ with location

Differ with selected generation

Egg clutch weight is a good proxy for fecundity but...

r=Spearman's correlation rho, (*P<0.05;**P<0.01; ***P<0.001; ns: not significant).

Treatment indicates test ID, genetic line, generation selected for body weight and location of rearing history. n represents sample size per treatment.

Bigger egg clutches also have longer(bigger) eggs

Black soldier fly eggs measured under a calibrated binocular

r=Spearman's correlation rho, (*P<0.05;**P<0.01; ***P<0.001; ns: not significant).

Treatment indicates test ID, genetic line, generation selected for body weight and location of rearing history. n represents sample size per treatment.

BW strain yielded heavier egg clutches

BW strain had more eggs

BW eggs were longer

No difference in estimated single egg weight

Major findings

- Maternal BW positively corelated with fecundity. Concurrent with other capital breeding insects
- Careful with generalizing fecundity based on egg clutch weight.
- No trade-off in clutch size and egg size.
- BW selection can bring dual benefits: Larval yield + egg yield

Future directions:

- Impact of BW Selection on fertility is unknown.
- We only show phenotypic relationship, no inferences can be made on genetic correlation

Acknowledgements

Petra Junes Ilse Christainen Estelle van den Boer

Roland Jacobse

Ljubinka Francuski

Eric Schmitt

Bregje Wertheim

Leo Beukeboom

